Publications and Research
Document Type
Article
Publication Date
8-17-2019
Abstract
Coupling crop growth models and remote sensing provides the potential to improve our understanding of the genotype x environment x management (G X E X M) variability of crop growth on a global scale. Unfortunately, the uncertainty in the relationship between the satellite measurements and the crop state variables across different sites and growth stages makes it diffcult to perform the coupling. In this study, we evaluate the effects of this uncertainty with MODIS data at the Mead, Nebraska Ameriflux sites (US-Ne1, US-Ne2, and US-Ne3) and accurate, collocated Hybrid-Maize (HM) simulations of leaf area index (LAI) and canopy light use effciency (LUECanopy). The simulations are used to both explore the sensitivity of the satellite-estimated genotype X management (G X M) parameters to the satellite retrieval regression coeffcients and to quantify the amount of uncertainty attributable to site and growth stage specific factors. Additional ground-truth datasets of LAI and LUECanopy are used to validate the analysis. The results show that uncertainty in the LAI/satellite measurement regression coeffcients lead to large uncertainty in the G X Mparameters retrievable from satellites. In addition to traditional leave-one-site-out regression analysis, the regression coeffcient uncertainty is assessed by evaluating the retrieval performance of the temporal change in LAI and LUECanopy. The weekly change in LAI is shown to be retrievable with a correlation coeffcient absolute value (|r|) of 0.70 and root-mean square error (RMSE) value of 0.4, which is significantly better than the performance expected if the uncertainty was caused by random error rather than secondary effects caused by site and growth stage specific factors (an expected |r| value of 0.36 and RMSE value of 1.46 assuming random error). As a result, this study highlights the importance of accounting for site and growth stage specific factors in remote sensing retrievals for future work developing methods coupling remote sensing with crop growth models.
Included in
Civil and Environmental Engineering Commons, Electrical and Computer Engineering Commons, Forest Sciences Commons
Comments
This article was originally published in Remote Sensing, available at doi:10.3390/rs11161928.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).