Publications and Research
Document Type
Article
Publication Date
7-15-2020
Abstract
Direct comparisons between historical and contemporary populations allow for detecting changes in genetic diversity through time and assessment of the impact of habitat fragmentation. Here, we determined the genetic architecture of both historical and modern lions to document changes in genetic diversity over the last century. We surveyed microsatellite and mitochondrial genome variation from 143 high-quality museum specimens of known provenance, allowing us to directly compare this information with data from several recently published nuclear and mitochondrial studies. Our results provide evidence for male-mediated gene flow and recent isolation of local subpopulations, likely due to habitat fragmentation. Nuclear markers showed a significant decrease in genetic diversity from the historical (HE = 0.833) to the modern (HE = 0.796) populations, whereas mitochondrial genetic diversity was maintained (Hd = 0.98 for both). Although the historical population appears to have been panmictic based on nDNA data, hierarchical structure analysis identified four tiers of genetic structure in modern populations and was able to detect most sampling locations. Mitogenome analyses identified four clusters: Southern, Mixed, Eastern, and Western and were consistent between modern and historically sampled haplotypes. Within the last century, habitat fragmentation caused lion subpopulations to become more geographically isolated as human expansion changed the African landscape. This resulted in an increase in fine-scale nuclear genetic structure and loss of genetic diversity as lion subpopulations became more differentiated, whereas mitochondrial structure and diversity were maintained over time.
Included in
Ecology and Evolutionary Biology Commons, Genetics and Genomics Commons, Veterinary Medicine Commons, Zoology Commons
Comments
This article was originally published in Molecular Biology and Evolution, available at https://doi.org/10.1093/molbev/msaa174.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.