Dissertations, Theses, and Capstone Projects
Date of Degree
6-2016
Document Type
Dissertation
Degree Name
Ph.D.
Program
Computer Science
Advisor
Changhe Yuan
Committee Members
Changhe Yuan
Andrew Rosenberg
Chao Chen
John Paisley
Liang Huang
Subject Categories
Other Computer Engineering
Keywords
Bayesian Network, Structure Learning, Heuristic Search, Graph Search, Artificial Intelligence, Machine Learning
Abstract
Bayesian networks are widely used graphical models which represent uncertain relations between the random variables in a domain compactly and intuitively. The first step of applying Bayesian networks to real-word problems is typically building the network structure. Optimal structure learning via score-and-search has become an active research topic in recent years. In this context, a scoring function is used to measure the goodness of fit of a structure to given data, and the goal is to find the structure which optimizes the scoring function. The problem has been viewed as a shortest path problem, and has been shown to be NP-hard. The complexity of the structure learning limits the usage of Bayesian networks. Thus, we propose to leverage and model correlations among variables to improve the efficiency of finding optimal structures of Bayesian networks.
In particular, the shortest path problem highlights the importance of two research issues: the quality of heuristic functions for guiding the search, and the complexity of search space. This thesis introduces several techniques for addressing the issues. We present effective approaches to reducing the search space by extracting constraints directly from data. We also propose various methods to improve heuristic functions, so as to search over the most promising part of the solution space. Empirical results show that these methods significantly improve the efficiency and scalability of heuristics search-based structure learning.
Recommended Citation
Fan, Xiannian, "Scale Up Bayesian Network Learning" (2016). CUNY Academic Works.
https://academicworks.cuny.edu/gc_etds/1301