Dissertations, Theses, and Capstone Projects
Date of Degree
9-2016
Document Type
Thesis
Degree Name
M.A.
Program
Linguistics
Advisor
William Gregory Sakas
Subject Categories
Computational Linguistics | First and Second Language Acquisition
Keywords
Part-of-speech, Tagger, Tagging, MLU, Tagging Accuracy
Abstract
This project evaluates four mainstream taggers on a representative collection of child-adult’s dialogues from Child Language Data Exchange System. The nine children’s files from Valian corpora and part of Eve corpora have been manually labeled, and rewrote with LARC tagset. They served as gold standard corpora in the training and testing process. Four taggers: CLAN MOR tagger, ACOPOST trigram tagger, Stanford parser, and Ver. 1.14 of Brill tagger have been tested by 10-fold cross validation. By analyzing what kinds of assumptions the tagger made about category assignment lead to failing, we identify several problematic cases of tagging. By comparing the average error rate of each tagger, we found the size of training data set, and the length of utterance both plays a role to effect tagging accuracy.
Recommended Citation
Huang, Rui, "An Evaluation of POS Taggers for the CHILDES Corpus" (2016). CUNY Academic Works.
https://academicworks.cuny.edu/gc_etds/1577