Dissertations, Theses, and Capstone Projects
Date of Degree
2-2021
Document Type
Dissertation
Degree Name
Ph.D.
Program
Biochemistry
Advisor
Ruel Z. B. Desamero
Committee Members
Lesley Davenport
Marilyn Gunner
Laura J. Juszczak
Richard Maggliozzo
Subject Categories
Analytical Chemistry | Biological and Chemical Physics | Organic Chemistry
Keywords
PKU, phenylketonuria, DHPR, mechanism, Raman spectroscopy, computational chemistry
Abstract
Human dihydropteridine reductase is an enzyme that transfers a hydride from NADH to reduce quinonoid 7,8-dihydropterin (qBH2) to 5,6,7,8-tetrahydropterin (BH4), which is a cofactor important in the production of neurotransmitters.DHPR deficiency causes a drastic form of the neurological genetic disease phenylketonuria (PKU) that does not benefit from a phenylalanine-free diet.From site-directed mutagenesis studies, mostly on Rat DHPR, we know that certain residues are important for cofactor binding, substrate binding, and hydride transfer; however, there are still some questions about how DHPR works, particularly, because there is not a crystal structure of the tertiary complex: What is the environment around the substrate pocket? Where does the compensatory proton go as the system accomplishes hydride transfer? Answering these questions are very important if we want to understand the mechanism of DHPR. Since the natural substrate is unstable, we used 6-amino-2,3-dimethylpyrimido[4,5-e][1,2,4]triazine-8-one (ADPT), which turned out to be an alternative substrate of DHPR. We probed the characteristics of this ligand in solution and in the DHPR-NAD+ complex by using isotope-edited Raman difference spectroscopy, density functional calculations, protonation state calculations, and docking simulations.
Recommended Citation
Arias De la Rosa, Gabriela, "Mechanism of Action of Dihydropteridine Reductase" (2021). CUNY Academic Works.
https://academicworks.cuny.edu/gc_etds/4131
Included in
Analytical Chemistry Commons, Biological and Chemical Physics Commons, Organic Chemistry Commons