Dissertations, Theses, and Capstone Projects
Date of Degree
2-2023
Document Type
Thesis
Degree Name
M.A.
Program
Linguistics
Advisor
Rivka Levitan
Subject Categories
Anthropological Linguistics and Sociolinguistics | Computational Linguistics
Keywords
twitter, social media, sentiment analysis, filipino, filipinx, text classification
Abstract
On social media, the use of “Filipinx” as a gender neutral, inclusive term for “Filipino” tends to generate high user engagement, at times without regard for the original context in which the word appears. This project applies computational methods to collect a large dataset in English/Filipino from Twitter containing “Filipinx”, and to train a Naïve Bayes model to classify tweets into three sentiments: positive, neutral, and negative. My methodology takes inspiration from that of four related studies that similarly conducted sentiment analysis on English/Filipino tweets involving various topics, and whose resulting accuracy scores were compared side-by-side. Conducting sentiment analysis on tweets that mention “Filipinx” would meet four goals: to compare the model’s performance with those from the previous four studies, to create a larger-scale picture of user sentiments about the use of “Filipinx” than what I previously presented in a small-scale sociolinguistics project, and to contribute to conversations on how Filipino social media users discursively define Filipino identity.
Recommended Citation
Taboy, Clarisse, "A Sentiment Analysis of "Filipinx" on Twitter Using a Multinomial Naïve Bayes Classification Model" (2023). CUNY Academic Works.
https://academicworks.cuny.edu/gc_etds/5234
Included in
Anthropological Linguistics and Sociolinguistics Commons, Computational Linguistics Commons