Publications and Research

Document Type

Article

Publication Date

11-29-2023

Abstract

We present an approach to achieve zero modes in lattice models that do not rely on any symmetry or topology of the bulk, which are robust against disorder in the bulk of any type and strength. Such symmetry-free zero modes (SFZMs) are formed by attaching a single site or small cluster with zero mode(s) to the bulk, which serves as the “nucleus” that expands to the entire lattice. We identify the requirements on the couplings between this boundary and the bulk, which reveals that this approach is intrinsically non-Hermitian. We then provide several examples with either an arbitrary or structured bulk, forming spectrally embedded zero modes in the bulk continuum, midgap zero modes, and even restoring the “zeroness” of coupling or disorder-shifted topological corner states. Focusing on viable realizations using photonic lattices, we show that the resulting SFZM can be observed as the single lasing mode when optical gain is applied to the boundary.

Comments

This article was originally published in Physical Review Letters, available at https://doi.org/10.1103/PhysRevLett.131.223801

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.