Publications and Research

Document Type

Article

Publication Date

5-3-2025

Abstract

It is experimentally established that there is no ground triplet state of the natural He atom. There is also no exact analytical solution to the Schrödinger equation corresponding to this state. For a two-dimensional two-electron ‘artificial atom’ or a semiconductor quantum dot in a magnetic field, as described by the Schrödinger–Pauli equation, we provide theoretical proof of the existence of a ground triplet state by deriving an exact analytical correlated wave function solution to the equation. The state exists in the Wigner high-electron-correlation regime. We further explain that the solution satisfies all requisite symmetry and electron coalescence constraints of a triplet state. Since, due to technological advances, such a Wigner crystal quantum dot can be created, we propose an experimental search for the theoretically predicted ground triplet-state spectral line. We note that there exists an analytical solution to the Schrödinger–Pauli equation for a ground singlet state in the Wigner regime for the same value of the magnetic field. The significance to quantum mechanics of the probable experimental observation of the ground triplet state for an ‘artificial atom’ is discussed.

Comments

This article was originally published in Axioms, available at https://doi.org/10.3390/axioms14050349

This work is distributed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.