Publications and Research

Document Type

Article

Publication Date

4-14-2015

Abstract

Phylogenomic footprinting is an approach for ab initio identification of genome-wide regulatory elements in bacterial species based on sequence conservation. The statistical power of the phylogenomic approach depends on the degree of sequence conservation, the length of regulatory elements, and the level of phylogenetic divergence among genomes. Building on an earlier model, we propose a binomial model that uses synonymous tree lengths as neutral expectations for determining the statistical significance of conserved intergenic spacer (IGS) sequences. Simulations show that the binomial model is robust to variations in the value of evolutionary parameters, including base frequencies and the transition-to-transversion ratio. We used the model to search for regulatory sequences in the Lyme disease species group (Borrelia burgdorferi sensu lato) using 23 genomes. The model indicates that the currently available set of Borrelia genomes would not yield regulatory sequences shorter than five bases, suggesting that genome sequences of additional B. burgdorferi sensu lato species are needed. Nevertheless, we show that previously known regulatory elements are indeed strongly conserved in sequence or structure across these Borrelia species. Further, we predict with sufficient confidence two new RpoS binding sites, 39 promoters, 19 transcription terminators, 28 noncoding RNAs, and four sets of coregulated genes. These putative cis- and trans-regulatory elements suggest novel, Borrelia-specific mechanisms regulating the transition between the tick and host environments, a key adaptation and virulence mechanism of B. burgdorferi. Alignments of IGS sequences are available on BorreliaBase.org, an online database of orthologous open reading frame (ORF) and IGS sequences in Borrelia.

Comments

This article originally appeared in mBio, available at DOI: 10.1128/mBio.00011-15.

© 2015 Martin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.