Publications and Research

Document Type

Article

Publication Date

Spring 5-5-2025

Abstract

Efficiency is essential to support responsiveness w.r.t. ever-growing datasets, especially for Deep Learning (DL) systems. DL frameworks have traditionally embraced deferred execution-style DL code—supporting symbolic, graph-based Deep Neural Network (DNN) computation. While scalable, such development is error-prone, non-intuitive, and difficult to debug. Consequently, more natural, imperative DL frameworks encouraging eager execution have emerged but at the expense of run-time performance. Though hybrid approaches aim for the "best of both worlds," using them effectively requires subtle considerations to make code amenable to safe, accurate, and efficient graph execution—avoiding performance bottlenecks and semantically inequivalent results. We discuss the engineering aspects of a refactoring tool that automatically determines when it is safe and potentially advantageous to migrate imperative DL code to graph execution and vice-versa.

Comments

To appear in the formal tool demonstration track of the 2025 International Conference on Fundamental Approaches to Software Engineering (FASE '25) to be held with the 2025 International Joint Conferences On Theory and Practice of Software (ETAPS '25).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.