Publications and Research

Document Type

Article

Publication Date

1-16-2018

Abstract

Background: This research demonstrates how the Akaike information criterion (AIC) can be an alternative to null hypothesis significance testing in selecting best fitting models. It presents an example to illustrate how AIC can be used in this way.

Methods: Using data from Milwaukee, Wisconsin, we test models of place-based predictor variables on street robbery and commercial robbery. We build models to balance explanatory power and parsimony. Measures include the presence of different kinds of businesses, together with selected age groups and social disadvantage.

Results: Models including place-based measures of land use emerged as the best models among the set of tested models. These were superior to models that included measures of age and socioeconomic status. The best models for commercial and street robbery include three measures of ordinary businesses, liquor stores, and spatial lag.

Conclusions: Models based on information theory offer a useful alternative to significance testing when a strong theoretical framework guides the selection of model sets. Theoretically relevant ‘ordinary businesses’ have a greater influence on robbery than socioeconomic variables and most measures of discretionary businesses.

Comments

This article was published originally in Crime Science (2018) 7:2, https://doi.org/10.1186/s40163-018-0077-5

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.