Publications and Research

Document Type

Article

Publication Date

2006

Abstract

The gastric mill network of the stomatogastric ganglion of the crab Cancer borealis is comprised of a set of neurons that require modulatory input from outside the stomatogastric ganglion and input from the pyloric network of the animal in order to oscillate. Here we study how the frequency of the gastric mill network is determined when it receives rhythmic input from two different sources but where the timing of these inputs may differ. We find that over a certain range of the time difference one of the two rhythmic inputs plays no role what so ever in determining the network frequency, while in another range, both inputs work together to determine the frequency. The existence and stability of periodic solutions to model sets of equations are obtained analytically using geometric singular perturbation theory. The results are validated through numerical simulations. Comparisons to experiments are also presented.

Comments

This article originally appeared in SIAM Journal on Applied Dynamical Systems, available at DOI: 10.1137/050625795.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.