Publications and Research

Document Type

Article

Publication Date

8-1-2024

Abstract

Thick lithium-iron phosphate (LFP) cathodes (31 mg cm−2) with rationally engineered pore structure and tortuosity were manufactured with an aerosol jet (AJ) printer. Cathode pore structuring was tuned by controlling the rate at which the printed ink dried. Slow-drying prints yielded smoother cathodes while fast-drying prints resulted in mesoscale structuring with substantial surface roughness. X-ray tomography further revealed that the rapid drying of AJ printed LFP cathodes produced low-tortuosity pore channels which were preserved after calendering. Full cells comprised of AJ print optimized LFP cathodes, with 30 mg cm−2 active material loadings, and capacity-matched, AJ printed lithium titanate anodes were assembled and electrochemically tested. Performance of the AJ printed full cells was compared to tape-cast (TC) full cells. At equivalent electrode loadings, compositions, and thicknesses, the AJ full cells outperformed the TC cells, averaging approximately 14% greater capacity per cycle after 100 cycles at a C/2 rate. Furthermore, at 1C, the AJ printed full cells realized a near two-fold increase in discharge capacity over the TC cells.

Comments

This article was originally published in Journal of Physics: Energy, available at https://doi.org/10.1088/2515-7655/ad670f

This work is distributed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.