Publications and Research

Document Type

Article

Publication Date

8-8-2018

Abstract

The Bermuda fireworm Odontosyllis enopla exhibits an extremely tight circalunar circadian behavior that results in an impressive bioluminescent mating swarm, thought to be due to a conventional luciferase-mediated oxidation of a light-emitting luciferin. In addition, the four eyes become hypertrophied and heavily pigmented, and the nephridial system is modified to store and release gametes and associated secretions. In an effort to elucidate transcripts related to bioluminescence, circadian or circalunar periodicity, as well as epitoky-related changes of the eyes and nephridial system, we examined the transcriptomic profile of three female O. enopladuring a bioluminescent swarm in Ferry Reach, Bermuda. Using the well-characterized luciferase gene of the Japanese syllid Odontosyllis undecimdonta as a reference, a complete best-matching luciferase open reading frame (329 amino acids in length) was found in all three individuals analyzed in addition to numerous other paralogous sequences in this new gene family. No photoproteins were detected. We also recovered a predicted homolog of 4-coumarate-CoA ligase (268 amino acids in length) that best matched luciferase of the firefly Luciola with the best predicted template being the crystal structure of luciferase for Photinus pyralis, the common eastern firefly. A wide variety of genes associated with periodicity were recovered including predicted homologs of clock, bmal1, period, and timeless. Several genes corresponding to putative epitoky-related changes of the eyes were recovered including predicted homologs of a phototransduction gene, a retinol dehydrogenase and carotenoid isomerooxygenase as well as a visual perception related retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase. Genes correlating to putative epitoky-related changes of the nephridia included predicted homologs of nephrocystin-3 and an egg-release sex peptide receptor.

Comments

This article originally appeared in PLoS ONE, available at http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200944

© 2018 Brugler et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.