Publications and Research

Document Type

Article

Publication Date

5-2006

Abstract

This paper applies the inverse probability weighted (IPW) least-squares method to estimate the effects of treatment on total medical cost, subject to censoring, in a panel-data setting. IPW pooled ordinary-least squares (POLS) and IPW random effects (RE) models are used. Because total medical cost might not be independent of survival time under administrative censoring, unweighted POLS and RE cannot be used with censored data, to assess the effects of certain explanatory variables. Even under the violation of this independency, IPW estimation gives consistent asymptotic normal coefficients with easily computable standard errors. A traditional and robust form of the Hausman test can be used to compare weighted and unweighted least squares estimators. The methods are applied to a sample of 201 Medicare beneficiaries diagnosed with lung cancer between 1994 and 1997.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.