Publications and Research

Document Type

Article

Publication Date

12-2020

Abstract

Background

Autologous blood products, such as platelet-rich plasma (PRP) are commercial products broadly used to accelerate healing of tissues after injuries. However, their content is not standardized and significantly varies in composition, which may lead to differences in clinical efficacy. Also, the underlying molecular mechanisms for therapeutic effects are not well understood.

Purpose

A proteomic study was performed to compare the composition of low leukocyte PRP, platelet poor plasma (PPP), and blood plasma. Pathway analysis of the proteomic data was performed to evaluate differences between plasma formulations at the molecular level. Low abundance regulatory proteins in plasma were identified and quantified as well as cellular pathways regulated by those proteins.

Methods

Quantitative proteomic analysis, using multiplexed isotopically labeled tags (TMT labeling) and label-free tandem mass spectrometry, was performed on plasma, low leukocyte PRP, and PPP. Plasma formulations were derived from two blood donors (one donor per experiment). Pathway analysis of the proteomic data identified the major differences between formulations.

Results

Nearly 600 proteins were detected in three types of blood plasma formulations in two experiments. Identified proteins showed more than 50% overlap between plasma formulations. Detected proteins represented more than 100 canonical pathways, as was identified by pathway analysis. The major pathways and regulatory molecules were linked to inflammation.

Conclusion

Three types of plasma formulations were compared in two proteomic experiments. The most represented pathways, such as Acute Phase Response, Coagulation, or System of the Complement, had many proteins in common in both experiments. In both experiments plasma sample sets had the same direction of biochemical pathway changes: up- or down-regulation. The most represented biochemical pathways are linked to inflammation.

Comments

This article was originally published in Regenerative Therapy, available at https://doi.org/10.1016/j.reth.2020.09.004

The article is distributed under a Creative Commons Attribution (CC BY-NC-ND 4.0) License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.