Publications and Research

Document Type

Article

Publication Date

11-19-2020

Abstract

The purpose of this work is to study the phenomenon of tidal locking in a pedagogical framework by analyzing the effective gravitational potential of a two-body system with two spinning objects. It is shown that the effective potential of such a system is an example of a fold catastrophe. In fact, the existence of a local minimum and saddle point, corresponding to tidally locked circular orbits, is regulated by a single dimensionless control parameter that depends on the properties of the two bodies and on the total angular momentum of the system. The method described in this work results in compact expressions for the radius of the circular orbit and the tidally locked spin/orbital frequency. The limiting case in which one of the two orbiting objects is point-like is studied in detail. An analysis of the effective potential, which in this limit depends on only two parameters, allows one to clearly visualize the properties of the system. The notorious case of the Mars' moon Phobos is presented as an example of a satellite that is past the no return point and, therefore, will not reach a stable or unstable tidally locked orbit.

Comments

Originally published as Ferroglia, Andrea, and Miguel CN Fiolhais. "Tidal locking and the gravitational fold catastrophe." American Journal of Physics 88, no. 12 (2020): 1059-1067 https://doi.org/10.1119/10.0001772

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.