Publications and Research

Document Type

Article

Publication Date

April 2013

Abstract

Long noncoding RNA (lncRNA) within mRNA sequences of Alzheimer's disease genes, namely, APP, APOE, PSEN1, and PSEN2, has been analyzed using fractal dimension (FD) computation and correlation analysis. We examined lncRNA by comparing mRNA FD to corresponding coding DNA sequences (CDSs) FD. APP, APOE, and PSEN1 CDSs select slightly higher FDs compared to the mRNA, while PSEN2 CDSs FDs are lower. The correlation coefficient for these sequences is 0.969. A comparative study of differentially expressed MAPK signaling pathway lncRNAs in pancreatic cancer cells shows a correlation of 0.771. Selection of higher FD CDSs could indicate interaction of Alzheimer's gene products APP, APOE, and PSEN1. Including hypocretin sequences (where all CDSs have higher fractal dimensions than mRNA) in the APP, APOE, and PSEN1 sequence analyses improves correlation, but the inclusion of erythropoietin (where all CDSs have higher FD than mRNA) would suppress correlation, suggesting that HCRT, a hypothalamus neurotransmitter related to the wake/sleep cycle, might be better when compared to EPO, a glycoprotein hormone, for targeting Alzheimer's disease drug development. Fractal dimension and entropy correlation have provided supporting evidence, consistent with evolutionary studies, for using a zebrafish model together with a mouse model, in HCRT drug development.

Comments

This work was originally published in Computational and Mathematical Methods in Medicine, available at doi:10.1155/2013/579136.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.