Publications and Research

Document Type

Article

Publication Date

5-31-2013

Abstract

In images of textured three-dimensional surfaces, pattern changes can be characterized as changes in orientation and spatial frequency, features for which neurons in primary visual cortex are classically selective. Previously, we have demonstrated that correct 3-D shape perception is contingent on the visibility of orientation flows that run parallel to the surface curvature. We sought to determine the relative contributions of orientation modulations (OMs) and frequency modulations (FMs) for the detection of slant and shape from 3-D surfaces. Results show that 1) when OM and FM indicate inconsistent degrees of surface slant or curvature, observer responses were consistent with the slant or curvature specified by OM even if the FM indicated a slant or curvature in the opposite direction to the same degree. 2) For slanted surfaces, OM information dictates slant perception at both shallow and steep slants while FM information is effective only for steep slants. Together these results point to a dominant role of OM information in the perception of 3-D slant and shape.

Comments

This work was originally published in PLoS ONE, available at doi:10.1371/journal.pone.0064958

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.