Publications and Research

Document Type

Article

Publication Date

12-2022

Abstract

In this work, we study theoretically and experimentally optical modes of photonic molecules—clusters of optically coupled spherical resonators. Unlike previous studies, we do not use stems to hold spheres in their positions relying, instead on optical tweezers to maintain desired structures. The modes of the coupled resonators are excited using a tapered fiber and are observed as resonances with a quality factor as high as 107. Using the fluorescent mapping technique, we observe families of coupled modes with similar spatial and spectral shapes repeating every free spectral range (a spectral separation between adjacent resonances of individual spheres). Experimental results are compared with the results of numerical simulations based on a multi-sphere Mie theory. This work opens the door for developing large arrays of coupled high-Q spherical resonators.

Comments

Kreps, Stanislav, Vladimir Shuvayev, Mark Douvidzon, et al."Coupled spherical-cavities." AIP Advances, vol. 12, 125022, 2022, doi: 10.1063/5.0084815

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.