Publications and Research

Document Type


Publication Date

April 2010


Abstract Background Protein translation is a vital cellular process for any living organism. The availability of interaction databases provides an opportunity for researchers to exploit the immense amount of data in silico such as studying biological networks. There has been an extensive effort using computational methods in deciphering the transcriptional regulatory networks. However, research on translation regulatory networks has caught little attention in the bioinformatics and computational biology community. Results In this paper, we present an exploratory analysis of yeast protein translation regulatory networks using hierarchical random graphs. We derive a protein translation regulatory network from a protein-protein interaction dataset. Using a hierarchical random graph model, we show that the network exhibits well organized hierarchical structure. In addition, we apply this technique to predict missing links in the network. Conclusions The hierarchical random graph mode can be a potentially useful technique for inferring hierarchical structure from network data and predicting missing links in partly known networks. The results from the reconstructed protein translation regulatory networks have potential implications for better understanding mechanisms of translational control from a system’s perspective.


This work was originally published in BMC Bioinformatics, available at doi:10.1186/1471-2105-11-S3-S2.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.