Publications and Research

Document Type

Article

Publication Date

2-19-2013

Abstract

This article introduces a manually curated data collection for gene expression meta-analysis of patients with ovarian cancer and software for reproducible preparation of similar databases. This resource provides uniformly prepared microarray data for 2970 patients from 23 studies with curated and documented clinical metadata. It allows users to efficiently identify studies and patient subgroups of interest for analysis and to perform meta-analysis immediately without the challenges posed by harmonizing heterogeneous microarray technologies, study designs, expression data processing methods and clinical data formats. We confirm that the recently proposed biomarker CXCL12 is associated with patient survival, independently of stage and optimal surgical debulking, which was possible only through meta-analysis owing to insufficient sample sizes of the individual studies. The database is implemented as the curatedOvarianData Bioconductor package for the R statistical computing language, providing a comprehensive and flexible resource for clinically oriented investigation of the ovarian cancer transcriptome. The package and pipeline for producing it are available from http://bcb.dfci.harvard. edu/ovariancancer.

Comments

This article was originally published in Database, available at doi:10.1093/database/bat01.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.