Publications and Research

Document Type

Article

Publication Date

2022

Abstract

Monitoring biodiversity change is key to effective conservation policy. While it is difficult to establish in situ biodiversity monitoring programs at broad geographical scales, remote sensing advances allow for near-real time Earth observations that may help with this goal. We combine periodical and freely available remote sensing information describing temperature and precipitation with curated biological information from several groups of animals and plants in the Brazilian Atlantic rainforest to design an indirect remote sensing framework that monitors potential loss and gain of biodiversity in near-real time. Using data from biological collections and information from repeated field inventories, we demonstrate that this framework has the potential to accurately predict trends of biodiversity change for both taxonomic and phylogenetic diversity. The framework identifies areas of potential diversity loss more accurately than areas of species gain, and performs best when applied to broadly distributed groups of animals and plants.

Comments

This article was originally published in PeerJ, available at http://doi.org/10.7717/peerj.13534

This work is distributed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.