Publications and Research
Document Type
Article
Publication Date
June 2014
Abstract
Progress in translational research has led to effective new treatments of a large number of diseases. Despite this progress, diseases including cancer and cardiovascular disorders still are at the top in death statistics and disorders such as osteoporosis and osteoarthritis represent an increasing disease burden in the aging population. Novel strategies in research are needed more than ever to overcome such diseases. The growing field of extracellular protein phosphorylation provides excellent opportunities to make major discoveries of disease mechanisms that can lead to novel therapies. Reversible phosphorylation/dephosphorylation of sites in the extracellular domains of matrix, cell-surface and trans-membrane proteins is emerging as a critical regulatory mechanism in health and disease. Moreover, a new concept is emerging from studies of extracellular protein phosphorylation: in cells where ATP is stored within secretory vesicles and released by exocytosis upon cell-stimulation, phosphorylation of extracellular proteins can operate as a messenger operating uniquely in signaling pathways responsible for long-term cellular adaptation. Here, we highlight new concepts that arise from this research, and discuss translation of the findings into clinical applications such as development of diagnostic disease markers and next-generation drugs.
Comments
This work was originally published in Journal of Translational Medicine, available at doi:10.1186/1479-5876-12-165.